Cree® XLamp® CXB1304 LED

PRODUCT DESCRIPTION

The XLamp® CXB1304 LED Array is the most compact member of the second generation of the CXA family that delivers up to 30% higher efficacy and up to 20% higher lumens than the first generation in the same small LES. The higher performance second generation CXA LED Arrays are compatible with the first generation, providing a drop-in performance upgrade to existing CXA LED designs to shorten the luminaire design cycle and improve time to market. Available in 2-step, 3-step and 5-step EasyWhite® bins and 2-step and 3-step Premium Color bins, the CXB1304 LED delivers high lumen output and high efficacy in a single, easy-to-use package that eliminates the need for reflow soldering, enabling lighting manufacturers to rapidly address small form factor lighting applications.

The *CX Family LED Design Guide* provides basic information on the requirements to use the CXB1304 LED successfully in luminaire designs.

FEATURES

- 6-mm optical source
- Mechanical and optical design consistent with other CXA13 LEDs
- Available in 70-, 80-, 90- and 95-minimum CRI options
- Cree EasyWhite® 2-, 3- and 5-step binning
- Premium Color 2- and 3-step binning
- Forward voltage options: 9-V class, 18-V class & 36-V class
- 85 °C binning and characterization
- Extremely uniform color over viewing angle
- Top-side solder connections
- Thermocouple attach point
- NEMA SSL-3 2011 standard flux bins
- RoHS and REACh compliant
- UL® recognized component (E349212)
TABLE OF CONTENTS

- Characteristics ... 3
- Operating Limits ... 3
- Flux Characteristics, EasyWhite® Order Codes and Bins - 9 V .. 5
- Flux Characteristics, Premium Color Order Codes and Bins - 9 V .. 8
- Flux Characteristics, EasyWhite® Order Codes and Bins - 18 V ... 9
- Flux Characteristics, Premium Color Order Codes and Bins - 18 V 12
- Flux Characteristics, EasyWhite® Order Codes and Bins - 36 V ... 13
- Flux Characteristics, Premium Color Order Codes and Bins - 36 V 16
- Relative Spectral Power Distribution, EasyWhite® ... 17
- Relative Spectral Power Distribution, Premium Color ... 18
- Electrical Characteristics ... 19
- Relative Luminous Flux ... 21
- Typical Spatial Distribution ... 24
- Performance Groups - Brightness .. 24
- Performance Groups - Chromaticity .. 25
- Premium Color Performance Groups - Chromaticity ... 26
- Cree EasyWhite® Bins Plotted on the 1931 CIE Color Space .. 27
- Cree Premium Color Bins Plotted on the 1931 CIE Color Space .. 28
- Bin and Order Code Formats .. 30
- Mechanical Dimensions ... 30
- Thermal Design ... 31
- Notes ... 33
- Packaging .. 34
CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing angle (FWHM)</td>
<td>degrees</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD withstand voltage (HBM per Mil-Std-883D)</td>
<td>V</td>
<td></td>
<td></td>
<td>8000</td>
</tr>
<tr>
<td>DC forward current (9 V)</td>
<td>mA</td>
<td>1000*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC forward current (18 V)</td>
<td>mA</td>
<td>500*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC forward current (36 V)</td>
<td>mA</td>
<td>250*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse current (9 V, 18V, 36 V)</td>
<td>mA</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage (9 V, 400 mA, 85 °C)</td>
<td>V</td>
<td>8.45</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>Forward voltage (18 V, 200 mA, 85 °C)</td>
<td>V</td>
<td>16.9</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Forward voltage (36 V, 100 mA, 85 °C)</td>
<td>V</td>
<td>33.8</td>
<td></td>
<td>38</td>
</tr>
</tbody>
</table>

* Refer to the Operating Limits section.

OPERATING LIMITS

The maximum current rating of the CXB1304 depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady-state operation. The graphs shown below assume that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Please refer to the Mechanical Dimensions section on page 30 for the location of the Tc measurement point.

Another important factor in good thermal management is the temperature of the Light Emitting Surface (LES). Cree recommends a maximum LES temperature of 135 °C to ensure optimal LED lifetime. Please refer to the Thermal Design section on page 31 for more information on LES temperature measurement.
OPERATING LIMITS - CONTINUED

For CXB1304-18V Standard:
- 85 °C, 500 mA
- 125 °C, 192 mA

For CXB1304-36V Standard:
- 85 °C, 250 mA
- 125 °C, 96 mA
FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 9 V \((I_0 = 400 \text{ mA}, T_J = 85 \degree \text{C}) \)

The following table provides order codes for XLamp CXB1304 LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 30).

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group</td>
<td>Flux (lm) @ 85 \degree C</td>
<td>Flux (lm) @ 25 \degree C**</td>
<td>Group</td>
</tr>
<tr>
<td>6500 K</td>
<td>70</td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td>5700 K</td>
<td>70</td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- ** Flux values @ 25 \degree C are calculated and for reference only.
FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 9 V (I_L = 400 mA, T_J = 85 °C) - CONTINUED

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI<sup>+</sup></th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000 K</td>
<td></td>
<td></td>
<td>Group</td>
<td>Group</td>
<td>Group</td>
</tr>
<tr>
<td>70</td>
<td>—</td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td>50E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4 550 607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>—</td>
<td>C2 440 486</td>
<td></td>
<td></td>
<td>50G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>92</td>
<td>B4 410 453</td>
<td></td>
<td></td>
<td>50G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 440 486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>—</td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td>40E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4 550 607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>—</td>
<td>C2 440 486</td>
<td>40H</td>
<td>40G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>92</td>
<td>B2 380 420</td>
<td>40H</td>
<td>40G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4 410 453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 440 486</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- ** Flux values @ 25 °C are calculated and for reference only.**
FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 9 V (I_p = 400 mA, T_j = 85 °C) - CONTINUED

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group</td>
<td>Order Code</td>
<td>Group</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
</tr>
<tr>
<td>3500 K</td>
<td>80</td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>90 92</td>
<td></td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td>3000 K</td>
<td>80</td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>90 92</td>
<td></td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td>2700 K</td>
<td>80</td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>90 92</td>
<td></td>
<td>A2</td>
<td>330</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
</tbody>
</table>
| 2200 K | 80 | | B2 | 380 | 420 | 22G | CBX1304-0000-0000C0HB222G | ** Flux values @ 25 °C are calculated and for reference only.**

** Notes **
* Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
* Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
* Flux values @ 25 °C are calculated and for reference only.
FLUX CHARACTERISTICS, PREMIUM COLOR ORDER CODES AND BINS - 9 V (I_f = 400 mA, T_j = 85 °C)

Fidelity

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI<sup>a</sup></th>
<th>Minimum Luminous Flux</th>
<th>Typical Luminous Flux</th>
<th>2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
</tr>
<tr>
<td>4000 K</td>
<td>95</td>
<td>98</td>
<td>B2</td>
<td>380</td>
</tr>
<tr>
<td>3500 K</td>
<td>95</td>
<td>98</td>
<td>A4</td>
<td>355</td>
</tr>
<tr>
<td>3000 K</td>
<td>95</td>
<td>98</td>
<td>A4</td>
<td>355</td>
</tr>
<tr>
<td>2700 K</td>
<td>95</td>
<td>98</td>
<td>A2</td>
<td>330</td>
</tr>
</tbody>
</table>

Specialty

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI</th>
<th>Minimum Luminous Flux</th>
<th>Typical Luminous Flux</th>
<th>2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
</tr>
<tr>
<td>3100 K</td>
<td>90</td>
<td>92</td>
<td>B4</td>
<td>410</td>
</tr>
<tr>
<td>3000 K</td>
<td>80</td>
<td>—</td>
<td>C2</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>B4</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>A2</td>
<td>330</td>
</tr>
</tbody>
</table>

Notes
- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- Flux values @ 25 °C are calculated and for reference only.
The following table provides order codes for XLamp CXB1304 LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 30).

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
</tr>
<tr>
<td>6500 K</td>
<td>70</td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
<td>607</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td>5700 K</td>
<td>70</td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
<td>607</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
</tbody>
</table>

Notes
- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- Flux values @ 25 °C are calculated and for reference only.
Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- ** Flux values @ 25 °C are calculated and for reference only.

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000 K</td>
<td>70</td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4 550 607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>C2 440 486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>B4 410 453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 440 486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 K</td>
<td>70</td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4 550 607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>C4 475 525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 510 563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>B4 410 453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 440 486</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 18 V (I_F = 200 mA, T_J = 85 °C) - CONTINUED
Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- ** Flux values @ 25 °C are calculated and for reference only.

FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 18 V (I_F = 200 mA, T_J = 85 °C) - CONTINUED

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
<td>Group</td>
</tr>
<tr>
<td>3500 K</td>
<td>80</td>
<td>—</td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td>3000 K</td>
<td>80</td>
<td>—</td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td>2700 K</td>
<td>80</td>
<td>—</td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>A2</td>
<td>330</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td>2200 K</td>
<td>80</td>
<td>—</td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
</tbody>
</table>
Fidelity

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI</th>
<th>Minimum Luminous Flux</th>
<th>Typical Luminous Flux</th>
<th>2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
</tr>
<tr>
<td>4000 K</td>
<td>95</td>
<td>98</td>
<td>B2</td>
<td>380</td>
</tr>
<tr>
<td>3500 K</td>
<td>95</td>
<td>98</td>
<td>A4</td>
<td>355</td>
</tr>
<tr>
<td>3000 K</td>
<td>95</td>
<td>98</td>
<td>A4</td>
<td>355</td>
</tr>
<tr>
<td>2700 K</td>
<td>95</td>
<td>98</td>
<td>A2</td>
<td>330</td>
</tr>
</tbody>
</table>

** For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.

** Flux values @ 25 °C are calculated and for reference only.

Specialty

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI</th>
<th>Minimum Luminous Flux</th>
<th>Typical Luminous Flux</th>
<th>2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
</tr>
<tr>
<td>3100 K</td>
<td>90</td>
<td>92</td>
<td>B4</td>
<td>410</td>
</tr>
<tr>
<td>3000 K</td>
<td>90</td>
<td>92</td>
<td>B4</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>A2</td>
<td>330</td>
</tr>
</tbody>
</table>

Notes:
- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- Flux values @ 25 °C are calculated and for reference only.
FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 36 V (I_F = 100 mA, T_J = 85 °C)

The following table provides order codes for XLamp CXB1304 LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 30).

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux 2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
</tr>
<tr>
<td>6500 K</td>
<td>70</td>
<td></td>
<td>C4</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td>C2</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
</tr>
<tr>
<td>5700 K</td>
<td>70</td>
<td></td>
<td>C4</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td>C2</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
</tr>
</tbody>
</table>

Notes:
- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- Flux values @ 25 °C are calculated and for reference only.
<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
</tr>
<tr>
<td>5000 K</td>
<td>70</td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
<td>607</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td>90</td>
<td>92</td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td>4000 K</td>
<td>70</td>
<td>—</td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>550</td>
<td>607</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>—</td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2</td>
<td>510</td>
<td>563</td>
</tr>
<tr>
<td>90</td>
<td>92</td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B4</td>
<td>410</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
</tr>
</tbody>
</table>

FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 36 V (Iобр = 100 mA, Tобр = 85 °C) - CONTINUED

Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree Xlamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- Flux values @ 25 °C are calculated and for reference only.
Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- ** Flux values @ 25 °C are calculated and for reference only.

Table: Flux Characteristics, EasyWhite® Order Codes and Bins - 36 V (I_p = 100 mA, T_c = 85 °C) - Continued

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
<td>Group</td>
</tr>
<tr>
<td>3500 K</td>
<td>80</td>
<td>B4</td>
<td>410</td>
<td>453</td>
<td>35H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>3000 K</td>
<td>80</td>
<td>B4</td>
<td>410</td>
<td>453</td>
<td>30H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>2700 K</td>
<td>80</td>
<td>B4</td>
<td>410</td>
<td>453</td>
<td>27H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>440</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>475</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>A2</td>
<td>330</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4</td>
<td>355</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>380</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>2200 K</td>
<td>80</td>
<td>B2</td>
<td>380</td>
<td>420</td>
<td>22H</td>
</tr>
</tbody>
</table>
FLUX CHARACTERISTICS, PREMIUM COLOR ORDER CODES AND BINS - 36 V (Iₑ = 100 mA, Tₑ = 85 °C)

Fidelity

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI*</th>
<th>Minimum Luminous Flux</th>
<th>Typical Luminous Flux</th>
<th>2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
</tr>
<tr>
<td>4000 K</td>
<td>95</td>
<td>98 B2</td>
<td>380</td>
<td>402</td>
</tr>
<tr>
<td>3500 K</td>
<td>95</td>
<td>98 A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td>3000 K</td>
<td>95</td>
<td>98 A4</td>
<td>355</td>
<td>392</td>
</tr>
<tr>
<td>2700 K</td>
<td>95</td>
<td>98 A2</td>
<td>330</td>
<td>361</td>
</tr>
</tbody>
</table>

Specialty

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI</th>
<th>Minimum Luminous Flux</th>
<th>Typical Luminous Flux</th>
<th>2-Step</th>
<th>3-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ Group</td>
<td>Flux (lm) @ 85 °C</td>
<td>Flux (lm) @ 25 °C**</td>
<td>Group</td>
</tr>
<tr>
<td>3100 K</td>
<td>90</td>
<td>92 B4</td>
<td>410</td>
<td>453</td>
<td>430</td>
</tr>
<tr>
<td>3000 K</td>
<td>80</td>
<td>C2</td>
<td>440</td>
<td>486</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92 B4</td>
<td>410</td>
<td>453</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98 A2</td>
<td>330</td>
<td>361</td>
<td>355</td>
</tr>
</tbody>
</table>

Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 33).
- Cree XLamp CXB1304 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
- Flux values @ 25 °C are calculated and for reference only.
RELATIVE SPECTRAL POWER DISTRIBUTION, EASYWHITE®

The following graph is the result of a series of pulsed measurements at 400 mA for the 9-V CXB1304 LED, 200 mA for the 18-V CXB1304 LED and 100 mA for the 36-V CXB1304 LED and $T_J = 85 \, ^\circ C$.

![Graph showing relative spectral power distribution for different color temperatures and color rendering indices.](image-url)
RELATIVE SPECTRAL POWER DISTRIBUTION, PREMIUM COLOR

The following graphs are the result of a series of pulsed measurements at 400 mA for the 9-V CXB1304 LED, 200 mA for the 18-V CXB1304 LED and 100 mA for the 36-V CXB1304 LED and $T_J = 85 ^\circ C$.

Fidelity

![Fidelity Graph](image)

Specialty

![Specialty Graph](image)
ELECTRICAL CHARACTERISTICS

The following graphs are the result of a series of steady-state measurements.
ELECTRICAL CHARACTERISTICS - CONTINUED

![Graph showing voltage (V) vs. current (mA) for different temperatures (Tc). The graph includes lines for Tc = 25 °C, Tc = 55 °C, Tc = 85 °C, and Tc = 105 °C. The voltage ranges from 32 to 38 V, and the current ranges from 50 to 250 mA.](graph.png)
RELATIVE LUMINOUS FLUX

The relative luminous flux values provided below are the ratio of:

- Measurements of CXB1304 at steady-state operation at the given conditions, divided by
- Flux measured during binning, which is a pulsed measurement at 400 mA at T_J = 85 °C for the 9-V CXB1304 LED.

Using the 9-V CXB1304 LED as an example, at steady-state operation of Tc = 55 °C, I_F = 300 mA, the relative luminous flux ratio is 80% in the chart below. A 9-V CXB1304 LED that measures 380 lm during binning will deliver 304 lm (380 * 0.8) at steady-state operation of Tc = 55 °C, I_F = 300 mA.
RELATIVE LUMINOUS FLUX - CONTINUED

The relative luminous flux values provided below are the ratio of:

- Measurements of CXB1304 at steady-state operation at the given conditions, divided by
- Flux measured during binning, which is a pulsed measurement at 200 mA at $T_J = 85 \, ^\circ C$ for the 18-V CXB1304 LED.

Using the 18-V CXB1304 LED as an example, at steady-state operation of $T_c = 55 \, ^\circ C$, $I_F = 150 \, mA$, the relative luminous flux ratio is 80% in the chart below. An 18-V CXB1304 LED that measures 380 lm during binning will deliver 304 lm (380×0.8) at steady-state operation of $T_c = 55 \, ^\circ C$, $I_F = 150 \, mA$.

![Graph showing relative luminous flux vs current for different temperatures](image-url)
RELATIVE LUMINOUS FLUX - CONTINUED

The relative luminous flux values provided below are the ratio of:

- Measurements of CXB1304 at steady-state operation at the given conditions, divided by
- Flux measured during binning, which is a pulsed measurement at 100 mA at $T_J = 85 \, ^\circ C$ for the 36-V CXB1304 LED.

Using the 36-V CXB1304 LED as an example, at steady-state operation of $T_c = 55 \, ^\circ C$, $I_F = 75 \, mA$, the relative luminous flux ratio is 80% in the chart below. A 36-V CXB1304 LED that measures 380 lm during binning will deliver 304 lm (380×0.8) at steady-state operation of $T_c = 55 \, ^\circ C$, $I_F = 75 \, mA$.
PERFORMANCE GROUPS - BRIGHTNESS (9 V, I_F = 400 mA; 18 V, I_F = 200 mA; 36 V, I_F = 100 mA, T_J = 85 °C)

XLamp CXB1304 LEDs are tested for luminous flux and placed into one of the following bins.

<table>
<thead>
<tr>
<th>Group Code</th>
<th>Minimum Luminous Flux</th>
<th>Maximum Luminous Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>330</td>
<td>355</td>
</tr>
<tr>
<td>A4</td>
<td>355</td>
<td>380</td>
</tr>
<tr>
<td>B2</td>
<td>380</td>
<td>410</td>
</tr>
<tr>
<td>B4</td>
<td>410</td>
<td>440</td>
</tr>
<tr>
<td>C2</td>
<td>440</td>
<td>475</td>
</tr>
<tr>
<td>C4</td>
<td>475</td>
<td>510</td>
</tr>
<tr>
<td>D2</td>
<td>510</td>
<td>550</td>
</tr>
<tr>
<td>D4</td>
<td>550</td>
<td>590</td>
</tr>
<tr>
<td>E2</td>
<td>590</td>
<td>635</td>
</tr>
</tbody>
</table>
PERFORMANCE GROUPS - CHROMATICITY (T_J = 85 °C)

XLamp CXB1304 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

EasyWhite Color Temperatures – 2-Step

<table>
<thead>
<tr>
<th>Code</th>
<th>CCT</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H</td>
<td>4000 K</td>
<td>0.3777</td>
<td>0.3739</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3797</td>
<td>0.3816</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3861</td>
<td>0.3855</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3838</td>
<td>0.3777</td>
</tr>
<tr>
<td>35H</td>
<td>3500 K</td>
<td>0.4022</td>
<td>0.3858</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4053</td>
<td>0.3942</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4125</td>
<td>0.3977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4091</td>
<td>0.3891</td>
</tr>
<tr>
<td>30H</td>
<td>3000 K</td>
<td>0.4287</td>
<td>0.3975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4328</td>
<td>0.4064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4390</td>
<td>0.4086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4347</td>
<td>0.3996</td>
</tr>
<tr>
<td>27H</td>
<td>2700 K</td>
<td>0.4524</td>
<td>0.4048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4574</td>
<td>0.4140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4633</td>
<td>0.4154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4581</td>
<td>0.4062</td>
</tr>
</tbody>
</table>

EasyWhite Color Temperatures – 3-Step Ellipse

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>CCT</th>
<th>Center Point</th>
<th>Major Axis</th>
<th>Minor Axis</th>
<th>Rotation Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50G</td>
<td>5000 K</td>
<td>0.3447</td>
<td>0.3553</td>
<td>0.00840</td>
<td>0.00312</td>
</tr>
<tr>
<td>40G</td>
<td>4000 K</td>
<td>0.3818</td>
<td>0.3797</td>
<td>0.00939</td>
<td>0.00402</td>
</tr>
<tr>
<td>35G</td>
<td>3500 K</td>
<td>0.4073</td>
<td>0.3917</td>
<td>0.00927</td>
<td>0.00414</td>
</tr>
<tr>
<td>30G</td>
<td>3000 K</td>
<td>0.4338</td>
<td>0.4030</td>
<td>0.00834</td>
<td>0.00408</td>
</tr>
<tr>
<td>27G</td>
<td>2700 K</td>
<td>0.4577</td>
<td>0.4099</td>
<td>0.00834</td>
<td>0.00420</td>
</tr>
<tr>
<td>22G</td>
<td>2200 K</td>
<td>0.5066</td>
<td>0.4158</td>
<td>0.00980</td>
<td>0.00480</td>
</tr>
</tbody>
</table>

EasyWhite Color Temperatures – 5-Step Ellipse

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>CCT</th>
<th>Center Point</th>
<th>Major Axis</th>
<th>Minor Axis</th>
<th>Rotation Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65E</td>
<td>6500 K</td>
<td>0.3123</td>
<td>0.3282</td>
<td>0.01110</td>
<td>0.00550</td>
</tr>
<tr>
<td>57E</td>
<td>5700 K</td>
<td>0.3287</td>
<td>0.3417</td>
<td>0.01230</td>
<td>0.00600</td>
</tr>
<tr>
<td>50E</td>
<td>5000 K</td>
<td>0.3447</td>
<td>0.3553</td>
<td>0.01400</td>
<td>0.00520</td>
</tr>
<tr>
<td>40E</td>
<td>4000 K</td>
<td>0.3818</td>
<td>0.3797</td>
<td>0.01565</td>
<td>0.00670</td>
</tr>
</tbody>
</table>
PREMIUM COLOR PERFORMANCE GROUPS - CHROMATICITY (T_j = 85 °C)

XLamp CXB1304 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

Fidelity

<table>
<thead>
<tr>
<th>EasyWhite Color Temperatures – 2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>L5A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3SH</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>30H</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>27H</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Specialty

<table>
<thead>
<tr>
<th>EasyWhite Color Temperatures – 2-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>L7B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>L7C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EasyWhite Color Temperatures – 3-Step Ellipse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Code</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>31Q</td>
</tr>
<tr>
<td>30Q</td>
</tr>
</tbody>
</table>
CREE EASYWHITE® BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_j = 85 °C)
CREE PREMIUM COLOR BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_j = 85 °C)

Fidelity (2-step)
CREE PREMIUM COLOR BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_J = 85 °C) - CONTINUED

Speciality (2-step)

Speciality (3-step)
BIN AND ORDER CODE FORMATS

Bin codes and order codes are configured as follows:

Order Code
- **Series** = CXB13
- **Internal code**
- **CRI Specification**
 - **B** = 70 CRI minimum
 - **H** = 80 CRI minimum
 - **U** = 90 CRI minimum
 - **Z** = 95 CRI minimum
- **Kit code**
- **Vf class**
 - **C0** = 9-V class
 - **F0** = 18-V class
 - **N0** = 36-V class
- **Performance class**

Bin Code
- **Series** = CXB13
- **Chromaticity bin**
- **Vf class**
 - **C0** = 9-V class
 - **F0** = 18-V class
 - **N0** = 36-V class
- **Internal code**
- **CRI Specification**
 - **B** = 70 CRI minimum
 - **H** = 80 CRI minimum
 - **U** = 90 CRI minimum
 - **Z** = 95 CRI minimum
- **Flux bin**
- **Performance class**

MECHANICAL DIMENSIONS

Dimensions are in mm.
Tolerances unless otherwise specified: ±0.13
\(x^\circ ±1^\circ\)

<table>
<thead>
<tr>
<th>Meaning of B1304X</th>
<th>B1304C = 9-V CXB1304</th>
<th>B1304F = 18-V CXB1304</th>
<th>B1304N = 36-V CXB1304</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1304X</td>
<td>13.35 ± 0.2</td>
<td>2.60</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>2.60</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>2.60</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2.60</td>
<td>2.60</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>2.60</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2.60</td>
<td>1.22</td>
<td>0.55 ± 0.1</td>
</tr>
</tbody>
</table>

Copyright © 2015-2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. UL® and the UR logo are registered trademarks of UL LLC.
THERMAL DESIGN

The CXB family of LED arrays can include over a hundred different LED die inside one package, and thus over a hundred different junction temperatures (T_J). Cree has intentionally removed junction-temperature-based operating limits and replaced the commonplace maximum T_J calculations with maximum ratings based on forward current (I_F) and case temperature (Tc). No additional calculations are required to ensure that the CXB LED is being operated within its designed limits. LES temperature measurement provides additional verification of good thermal design. Please refer to page 3 for the Operating Limit specifications.

There is no need to calculate for T_J inside the package, as the thermal management design process, specifically from T_sp to ambient (T_a), remains identical to any other LED component. For more information on thermal management of Cree XLamp LEDs, please refer to the Thermal Management application note. For CXB soldering recommendations and more information on thermal interface materials (TIM), LES temperature measurement, and connection methods, please refer to the Cree XLamp CX Family LEDs soldering and handling document. The CX Family LED Design Guide provides basic information on the requirements to use Cree XLamp CXB LEDs successfully in luminaire designs.

To keep the CXB1304 LED at or below the maximum rated Tc, the case to ambient temperature thermal resistance (R_c-a) must be at or below the maximum R_c-a value shown on the following graphs, depending on the operating environment. The y-axis in each graph is a base 10 logarithmic scale.

As the figure at right shows, the R_c-a value is the sum of the thermal resistance of the TIM (R_tim) plus the thermal resistance of the heat sink (R_hs).
THERMAL DESIGN - CONTINUED

- For 18 V:
 - Maximum R_{c-a} vs. Current (mA)
 - Curves for $T_a = 25 °C$, $T_a = 55 °C$, $T_a = 85 °C$, and $T_a = 105 °C$

- For 36 V:
 - Maximum R_{c-a} vs. Current (mA)
 - Curves for $T_a = 25 °C$, $T_a = 55 °C$, $T_a = 85 °C$, and $T_a = 105 °C$
NOTES

Measurements
The luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree’s control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications.

Pre-Release Qualification Testing
Please read the LED Reliability Overview for details of the qualification process Cree applies to ensure long-term reliability for XLamp LEDs and details of Cree’s pre-release qualification testing for XLamp LEDs.

Lumen Maintenance
Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document.

Please read the Long-Term Lumen Maintenance application note for more details on Cree’s lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Ecology section of the Cree website.

REACH Compliance
REACH substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACH Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

UL® Recognized Component
This product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.

Vision Advisory
WARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LED Eye Safety application note.
PACKAGING

Cree CXB1304 LEDs are packaged in trays of 20. Five trays are sealed in an anti-static bag and placed inside a carton, for a total of 100 LEDs per carton. Each carton contains 100 LEDs from the same performance bin.

Dimensions are in inches.
Tolerances: ±.13
X° ±1°