Cree® XLamp® MC-E LEDs

INTRODUCTION

This application note applies to XLamp® MC-E LEDs, which have order codes in the following format:

MCxxxx-xx-xxxx-xxxxxx

This application note explains how XLamp MC-E LEDs and assemblies containing XLamp MC-E LEDs should be handled during manufacturing. Please read the entire document to understand how to properly handle XLamp MC-E LEDs.

TABLE OF CONTENTS

Handling XLamp® MC-E LEDs .. 2
Circuit Board Preparation & Layouts .. 3
Case Temperature (T,) Measurement Point 4
Notes on Soldering XLamp® MC-E LEDs 4
Low Temperature Operation ... 5
XLamp® MC-E LED Reflow Soldering Characteristics 6
Moisture Sensitivity .. 7
Chemicals & Conformal Coatings .. 8
Assembly Storage & Handling .. 9
Tape and Reel ... 10
Packaging & Labels ... 11
HANDLING XLAMP® MC-E LEDs

Cree recommends the following at all times when handling XLamp MC-E LEDs or assemblies containing XLamp MC-E LEDs:

• Avoid putting mechanical stress on the LED lens.
• Never touch the optical surface with fingers or sharp objects. The LED lens surface could be soiled or damaged, which would affect the optical performance of the LED.
• Cree recommends always handling MC-E LEDs with appropriate ESD grounding.
• Cree recommends handling MC-E LEDs wearing clean, lint-free gloves.

Whenever possible, Cree recommends the use of a pick & place tool to remove XLamp MC-E LEDs from the factory tape & reel packaging.

Pick & Place Nozzle

For pick and place nozzles coming into contact with silicone-covered LED components, Cree recommends nozzles be constructed of non-metallic materials. Cree and several of Cree’s customers have had good success using nozzles fabricated from Teflon or from 90d urethane.

Cree recommends the pickup tool shown below for XLamp MC-E LEDs.
Manual Handling

Use tweezers to grab XLamp MC-E LEDs at the base. Do not touch the lens with the tweezers. Do not touch the lens with fingers. Do not push on the lens.

Circuit Board Preparation & Layouts

Printed circuit boards (PCBs) should be prepared and/or cleaned according to the manufacturer's specifications before placing or soldering XLamp MC-E LEDs onto the PCB.

The diagrams below show the recommended PCB solder pad layout and stencil pattern for XLamp MC-E LEDs.

All dimensions in mm.
CASE TEMPERATURE (Tₜ) MEASUREMENT POINT

XLamp MC-E LED case temperature (Tₜ) should be measured on the PCB surface, as close to the LED's thermal pad as possible. This measurement point is shown in the picture below.

It is not required to use a solder footprint for the thermal pad that is larger than the XLamp MC-E LED itself. In testing, Cree has found such a solder pad to have insignificant impact on the resulting Tₜ measurement.

NOTES ON SOLDERING XLAMP® MC-E LEDS

XLamp MC-E LEDs are designed to be reflow soldered to a PCB. Reflow soldering may be done by a reflow oven or by placing the PCB on a hotplate and following the reflow soldering profile listed on the previous page.

Do not wave solder XLamp MC-E LEDs. Do not hand solder XLamp MC-E LEDs.
NOTES ON SOLDERING XLAMP® MC-E LEDS (CONTINUED)

Solder Paste Type
Cree strongly recommends using “no clean” solder paste with XLamp MC-E LEDs so that cleaning the PCB after reflow soldering is not required. Cree uses Kester® R276 solder paste internally.

Cree recommends the following solder paste compositions: SnAgCu (tin/silver/copper) and SnAg (tin/silver).

Solder Paste Thickness
The choice of solder and the application method will dictate the specific amount of solder. For the most consistent results, an automated dispensing system or a solder stencil printer is recommended. Cree has seen positive results using solder thickness that results in a 4-mil (102-μm) bond line, i.e., the solder joint thickness after reflow soldering.

After Soldering
After soldering, allow XLamp MC-E LEDs to return to room temperature before subsequent handling. Premature handling of the device, especially around the lens, could result in damage to the LED.

Cree recommends verifying the solder process by checking the consistency of the solder bond of several trial PCBs after reflow. After shearing selected devices from the circuit board the solder should appear completely re-flowed (no solder grains evident). The solder areas should show minimum evidence of voids on the backside of the package and the PCB.

Cleaning PCBs After Soldering
Cree recommends using “no clean” solder paste so that flux cleaning is not necessary after reflow soldering. If PCB cleaning is necessary, Cree recommends the use of isopropyl alcohol (IPA).

Do not use ultrasonic cleaning.

LOW TEMPERATURE OPERATION

The minimum operating temperature of these XLamp LED components is -40 °C. To maximize lifetime, Cree recommends avoiding applications where the lamps are cycled on and off more than 10,000 cycles at temperatures below 0 °C.
XLAMP® MC-E LED REFLOW SOLDERING CHARACTERISTICS

In testing, Cree has found XLamp MC-E LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of the solder paste used. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment.

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Lead-Free Solder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Ramp-Up Rate (Ts_{max} to Tp)</td>
<td>1.2 °C/second</td>
</tr>
<tr>
<td>Preheat: Temperature Min (Ts_{min})</td>
<td>120 °C</td>
</tr>
<tr>
<td>Preheat: Temperature Max (Ts_{max})</td>
<td>170 °C</td>
</tr>
<tr>
<td>Preheat: Time (ts_{min} to ts_{max})</td>
<td>65-150 seconds</td>
</tr>
<tr>
<td>Time Maintained Above: Temperature (T_L)</td>
<td>217 °C</td>
</tr>
<tr>
<td>Time Maintained Above: Time (t_L)</td>
<td>45-90 seconds</td>
</tr>
<tr>
<td>Peak/Classification Temperature (Tp)</td>
<td>235 - 245 °C</td>
</tr>
<tr>
<td>Time Within 5 °C of Actual Peak Temperature (tp)</td>
<td>20-40 seconds</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
<td>1 - 6 °C/second</td>
</tr>
<tr>
<td>Time 25 °C to Peak Temperature</td>
<td>4 minutes max.</td>
</tr>
</tbody>
</table>

Note: All temperatures refer to topside of the package, measured on the package body surface.
MOISTURE SENSITIVITY

Cree recommends keeping XLamp MC-E LEDs in the provided, resealable moisture-barrier packaging (MBP) until immediately prior to soldering. Unopened MBPs that contain XLamp LEDs do not need special storage for moisture sensitivity.

Once the MBP is opened, XLamp MC-E LEDs should be handled and stored as MSL 4 per JEDEC J-STD-033, meaning they have limited exposure time before damage to the LED may occur during the soldering operation. The table on the right specifies the maximum exposure time in days depending on temperature and humidity conditions. LEDs with exposure time longer than the specified maximums must be baked according to the baking conditions listed below.

Baking Conditions
It is not necessary to bake all XLamp MC-E LEDs. Only the LEDs that meet all of the following criteria must be baked:

1. LEDs that have been removed from the original MBP.
2. LEDs that have been exposed to a humid environment longer than listed in the Moisture Sensitivity section above.
3. LEDs that have not been soldered.

Baking Procedure
Baking the LEDs will remove moisture from the package and reset the exposure time, as defined in the Moisture Sensitivity section above. Cree recommends baking any LEDs that may have been exposed to excessive moisture.

1. Remove LEDs or reel of LEDs from MBP.
2. LEDs may be baked on the original reels.
3. Bake LEDs or reel of LEDs at 80ºC for 24 hours.
4. Reflow solder the parts within one hour of baking or immediately store the parts in a container with < 10% RH.

IMPORTANT: Do not bake reels of LEDs at temperatures higher than 80 ºC.

Storage Conditions
XLamp MC-E LEDs that have been removed from the original MBP but not soldered should be stored in one of the following ways:

- Store the parts in a rigid metal container with a tight-fitting lid. Place fresh dessicant and an RH (relative humidity) indicator in the container to verify the temperature is 25 ± 5 ºC and the RH is no greater than 10%.
- Store the parts in a dry, nitrogen-purged cabinet or container that actively maintains the temperature at 25 ± 5 ºC and the RH at no greater than 10%.
- For short-term storage only: LEDs can be resealed in the original MBP soon after opening. Fresh dessicant may be needed. Use the included humidity indicator card to verify < 20% RH.

If an environment of < 10% RH is not available for storage, XLamp MC-E LEDs should be baked (described above) one hour before reflow soldering.
CHEMICALS & CONFORMAL COATINGS

Below are representative lists of chemicals and materials to be used or avoided in LED manufacturing activities. For a complete and current list of recommended chemicals, conformal coatings and harmful chemicals consult Cree’s Chemical Compatibility Application Note. The video at www.youtube.com/watch?v=t24bf9D_1SA illustrates the process Cree has developed for testing the compatibility of chemicals and materials with LEDs. You should also consult your regional Cree Field Applications Engineer.

Recommended Cleaning Solutions

Cree has found the following chemicals to be safe to use with XLamp MC-E LEDs.

- Water
- Isopropyl alcohol (IPA)

Chemicals Tested as Harmful

In general, subject to the specifics in Cree’s Chemical Compatibility Application Note, Cree has found certain chemicals to be harmful to XLamp MC-E LEDs. Cree recommends not using these chemicals anywhere in an LED system containing XLamp MC-E LEDs. The fumes from even small amounts of the chemicals may damage the LEDs.

- Chemicals that might outgas aromatic hydrocarbons (e.g., toluene, benzene, xylene)
- Methyl acetate or ethyl acetate (i.e., nail polish remover)
- Cyanoacrylates (i.e., “Superglue”)
- Glycol ethers (including Radio Shack® Precision Electronics Cleaner - dipropylene glycol monomethyl ether)
- Formaldehyde or butadiene (including Ashland® PLOBOND® adhesive)

Hermetically Sealing Luminaires

For proper LED operation and to avoid potential lumen depreciation and/or color shift, LEDs of all types must operate in an environment that contains oxygen. Simply allowing the LEDs to ventilate to air is sufficient; no extraordinary measures are required. Hermetically sealing LEDs in an enclosed space is not recommended.
ASSEMBLY STORAGE & HANDLING

Do not stack PCBs or assemblies containing XLamp MC-E LEDs so that anything rests on the LED lens. Force applied to the LED lens may result in the lens being knocked off. PCBs or assemblies containing XLamp MC-E LEDs should be stacked in a way to allow at least 1-cm clearance above the LED lens.

Do not use bubble wrap directly on top of XLamp MC-E LEDs. Force from the bubble wrap can potentially damage the LED.
TAPE AND REEL

All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard.

Except as noted, all dimensions in mm.
PACKAGING & LABELS

The diagrams below show the packaging and labels Cree uses to ship XLamp MC-E LEDs. XLamp MC-E LEDs are shipped in tape loaded on a reel. Each box contains only one reel in a moisture barrier bag.

Unpackaged Reel

![Unpackaged Reel Diagram]

Label with Cree Bin Code, Quantity, Reel ID

Packaged Reel

![Packaged Reel Diagram]

Dessicant (inside bag)
Humidity Indicator Card (inside bag)
Label with Cree Order Code, Quantity, Reel ID, PO #
Label with Cree Bin Code, Quantity, Reel ID

Boxed Reel

![Boxed Reel Diagram]

Label with Cree Order Code, Quantity, Reel ID, PO #
Label with Cree Bin Code, Quantity, Reel ID
Patent Label (on bottom of box)