Cree® Screen Master® 4-mm Oval LED
C4SMR-RJY/GJY/BJY

PRODUCT DESCRIPTION
These oval LEDs are designed for full color video displays and signs for live action events and advertising signs. The oval-shaped radiation pattern and high luminous intensity ensure that these devices are excellent for wide-field-of-view outdoor applications where a wide viewing angle and readability in sunlight are essential.

These lamps are made with an advanced optical-grade epoxy that offers superior high-temperature and high-moisture-resistance performance in outdoor signal and sign applications. The encapsulation resin contains anti-UV material in order to reduce the effects of long-term exposure to direct sunlight.

FEATURES
- Size (mm): 4
- Color and Typical Dominant Wavelength:
 - Red (621nm)
 - Green (530nm)
 - Blue (470nm)
- Luminous Intensity (mcd)
 - C4SMR-RJY: (934-1520)@15mA
 - C4SMR-GJY: (1824-3000)@10mA
 - C4SMR-BJY: (336-550)@10mA
- Lead - Free
- RoHS Compliant

APPLICATIONS
- Electronic Signs & Signals (ESS)
- Full Color video screen
- Motorway Signs
- Variable Message Sign (VMS)
- Advertising signs
- Petrol Signs
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>Absolute Maximum Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Blue and Green</td>
</tr>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>50 Note1</td>
<td>35</td>
</tr>
<tr>
<td>Peak Forward Current</td>
<td>I_FP</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_op</td>
<td>-40 ~ +95</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td>-40 ~ +100</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Soldering Temperature</td>
<td>T_sol</td>
<td>Max. 260°C for 3 sec. max. (3 mm from the base of the epoxy bulb)</td>
<td></td>
</tr>
</tbody>
</table>

Electrostatic Discharge Classification (MIL-STD-883E) ESD Class 2

Note:
1. For long term performance the drive currents between 10mA and 30mA are recommended. Please contact CREE sales representative for more information on recommended drive conditions.
2. Pulse width ≤0.1 msec, duty ≤1/10.

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS (T_A = 25°C)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Color</th>
<th>Symbol</th>
<th>Condition</th>
<th>Unit</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>Red</td>
<td>V_F</td>
<td>I_F = 15 mA</td>
<td>V</td>
<td>2.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>V_F</td>
<td>I_F = 10 mA</td>
<td>V</td>
<td>2.9</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>V_F</td>
<td>I_F = 10 mA</td>
<td>V</td>
<td>3.0</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Reverse Current</td>
<td>Red</td>
<td>I_S</td>
<td>V_S = 5 V</td>
<td>µA</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue/Green</td>
<td>I_S</td>
<td>V_S = 5 V</td>
<td>µA</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominant Wavelength</td>
<td>Red</td>
<td>λ_D</td>
<td>I_p = 15 mA</td>
<td>nm</td>
<td>619</td>
<td>621</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>λ_D</td>
<td>I_p = 10 mA</td>
<td>nm</td>
<td>520</td>
<td>530</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>λ_D</td>
<td>I_p = 10 mA</td>
<td>nm</td>
<td>460</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>Luminous Intensity</td>
<td>Red</td>
<td>I_V</td>
<td>I_p = 15 mA</td>
<td>mcd</td>
<td>852</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>I_V</td>
<td>I_p = 10 mA</td>
<td>mcd</td>
<td>1672</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>I_V</td>
<td>I_p = 10 mA</td>
<td>mcd</td>
<td>308</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Luminous Intensity(Reference)</td>
<td>Red</td>
<td>I_V</td>
<td>I_p = 20 mA</td>
<td>mcd</td>
<td>1310</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>I_V</td>
<td>I_p = 20 mA</td>
<td>mcd</td>
<td>2781</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>I_V</td>
<td>I_p = 20 mA</td>
<td>mcd</td>
<td>550</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Continuous reverse voltage can cause LED damage.
INTENSITY BIN LIMIT (RED $I_F = 15$ mA, GREEN $I_F = 10$ mA, BLUE $I_F = 10$ mA)

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Min.(mcd)</th>
<th>Max.(mcd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>852</td>
<td>934</td>
</tr>
<tr>
<td>S3</td>
<td>934</td>
<td>1017</td>
</tr>
<tr>
<td>S4</td>
<td>1017</td>
<td>1100</td>
</tr>
<tr>
<td>T1</td>
<td>1100</td>
<td>1205</td>
</tr>
<tr>
<td>T2</td>
<td>1205</td>
<td>1310</td>
</tr>
<tr>
<td>T3</td>
<td>1310</td>
<td>1415</td>
</tr>
<tr>
<td>T4</td>
<td>1415</td>
<td>1520</td>
</tr>
<tr>
<td>U1</td>
<td>1520</td>
<td>1672</td>
</tr>
</tbody>
</table>

- Tolerance of measurement of luminous intensity is ±15%

COLOR BIN LIMIT (RED $I_F = 15$ mA, GREEN $I_F = 10$ mA, BLUE $I_F = 10$ mA)

Red

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Min.(nm)</th>
<th>Max.(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB</td>
<td>619</td>
<td>624</td>
</tr>
</tbody>
</table>

Green

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Min.(nm)</th>
<th>Max.(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td>G23</td>
<td>522.5</td>
<td>527.5</td>
</tr>
<tr>
<td>G8</td>
<td>525</td>
<td>530</td>
</tr>
<tr>
<td>G45</td>
<td>527.5</td>
<td>532.5</td>
</tr>
<tr>
<td>G9</td>
<td>530</td>
<td>535</td>
</tr>
<tr>
<td>G67</td>
<td>532.5</td>
<td>537.5</td>
</tr>
<tr>
<td>Ga</td>
<td>535</td>
<td>540</td>
</tr>
</tbody>
</table>

Blue

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Min.(nm)</th>
<th>Max.(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>460</td>
<td>465</td>
</tr>
<tr>
<td>B23</td>
<td>462.5</td>
<td>467.5</td>
</tr>
<tr>
<td>B4</td>
<td>465</td>
<td>470</td>
</tr>
<tr>
<td>B45</td>
<td>467.5</td>
<td>472.5</td>
</tr>
<tr>
<td>B5</td>
<td>470</td>
<td>475</td>
</tr>
</tbody>
</table>

- Tolerance of measurement of dominant wavelength is ±1 nm
ORDER CODE TABLE*

C4SMR-RJY

<table>
<thead>
<tr>
<th>Color</th>
<th>Kit Number</th>
<th>Luminous Intensity (mcd)</th>
<th>Dominant Wavelength</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Color Bin</td>
</tr>
<tr>
<td>Red</td>
<td>C4SMR-RJY-CS2U1BB1</td>
<td>852</td>
<td>1672</td>
<td>RB</td>
</tr>
<tr>
<td>Red</td>
<td>C4SMR-RJY-CS24QBB1</td>
<td>Any 4 consecutive sub-bins: S2(852) - T3(1415)</td>
<td>RB</td>
<td>619</td>
</tr>
<tr>
<td>Red</td>
<td>C4SMR-RJY-CS34QBB1</td>
<td>Any 4 consecutive sub-bins: S3(934) - T4(1520)</td>
<td>RB</td>
<td>619</td>
</tr>
<tr>
<td>Red</td>
<td>C4SMR-RJY-CS2U1BB2</td>
<td>852</td>
<td>1672</td>
<td>RB</td>
</tr>
<tr>
<td>Red</td>
<td>C4SMR-RJY-CS24QBB2</td>
<td>Any 4 consecutive sub-bins: S2(852) - T3(1415)</td>
<td>RB</td>
<td>619</td>
</tr>
<tr>
<td>Red</td>
<td>C4SMR-RJY-CS34QBB2</td>
<td>Any 4 consecutive sub-bins: S3(934) - T4(1520)</td>
<td>RB</td>
<td>619</td>
</tr>
</tbody>
</table>

C4SMR-GJY

<table>
<thead>
<tr>
<th>Color</th>
<th>Kit Number</th>
<th>Luminous Intensity (mcd)</th>
<th>Dominant Wavelength</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Color Bin</td>
</tr>
<tr>
<td>Green</td>
<td>C4SMR-GJY-CU2W17a1</td>
<td>1672</td>
<td>3295</td>
<td>G7</td>
</tr>
<tr>
<td>Green</td>
<td>C4SMR-GJY-CU24Q7D1</td>
<td>Any 4 consecutive sub-bins: U2(1672) - V3(2781)</td>
<td>Any 1 color bin from G7 (520) to Ga (540)</td>
<td>Bulk</td>
</tr>
<tr>
<td>Green</td>
<td>C4SMR-GJY-CU34Q7D1</td>
<td>Any 4 consecutive sub-bins: U3(1824) - V4(3000)</td>
<td>Any 1 color bin from G7 (520) to Ga (540)</td>
<td>Bulk</td>
</tr>
<tr>
<td>Green</td>
<td>C4SMR-GJY-CU2W17a2</td>
<td>1672</td>
<td>3295</td>
<td>G7</td>
</tr>
<tr>
<td>Green</td>
<td>C4SMR-GJY-CU24Q7D2</td>
<td>Any 4 consecutive sub-bins: U2(1672) - V3(2781)</td>
<td>Any 1 color bin from G7 (520) to Ga (540)</td>
<td>Ammo</td>
</tr>
<tr>
<td>Green</td>
<td>C4SMR-GJY-CU34Q7D2</td>
<td>Any 4 consecutive sub-bins: U3(1824) - V4(3000)</td>
<td>Any 1 color bin from G7 (520) to Ga (540)</td>
<td>Ammo</td>
</tr>
</tbody>
</table>

C4SMR-BJY

<table>
<thead>
<tr>
<th>Color</th>
<th>Kit Number</th>
<th>Luminous Intensity (mcd)</th>
<th>Dominant Wavelength</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Color Bin</td>
</tr>
<tr>
<td>Blue</td>
<td>C4SMR-BJY-CP2R1351</td>
<td>308</td>
<td>605</td>
<td>B3</td>
</tr>
<tr>
<td>Blue</td>
<td>C4SMR-BJY-CP24Q3C1</td>
<td>Any 4 consecutive sub-bins: P2(308) - Q3(510)</td>
<td>Any 1 color bin from B3 (460) to B5 (475)</td>
<td>Bulk</td>
</tr>
<tr>
<td>Blue</td>
<td>C4SMR-BJY-CP34Q3C1</td>
<td>Any 4 consecutive sub-bins: P3(336) - Q4(550)</td>
<td>Any 1 color bin from B3 (460) to B5 (475)</td>
<td>Bulk</td>
</tr>
<tr>
<td>Blue</td>
<td>C4SMR-BJY-CP2R1352</td>
<td>308</td>
<td>605</td>
<td>B3</td>
</tr>
<tr>
<td>Blue</td>
<td>C4SMR-BJY-CP24Q3C2</td>
<td>Any 4 consecutive sub-bins: P2(308) - Q3(510)</td>
<td>Any 1 color bin from B3 (460) to B5 (475)</td>
<td>Ammo</td>
</tr>
<tr>
<td>Blue</td>
<td>C4SMR-BJY-CP34Q3C2</td>
<td>Any 4 consecutive sub-bins: P3(336) - Q4(550)</td>
<td>Any 1 color bin from B3 (460) to B5 (475)</td>
<td>Ammo</td>
</tr>
</tbody>
</table>

Notes:
1. The above kit numbers represent order codes that include multiple intensity-bin and color-bin codes. Only one intensity-sub-bin code and one color-bin code will be shipped on each reel. Selected single intensity-bin, single color-bin codes will be orderable in certain quantities. For example, any 1 Intensity bins from U3 to V4 mean only one intensity bin with six sub-bins of the following brightness ranges (U3-V4) will be shipped by Cree. For example, any one-color bin from G7 to Ga means only one color bin (G7 or G23 or G8 or G45 or G9 or G67 or Ga) will be shipped by Cree.
2. Please refer to the “Cree LED Lamp Reliability Test Standards” document #1 for reliability test conditions.
3. Please refer to the "Cree LED Lamp Soldering & Handling" document #2 for information about how to use this LED product safely.

#1: Refer to http://www.cree.com/led-components/media/documents/LED_Lamp_Reliability_Test_Standard.pdf
#2: Refer to http://www.cree.com/led-components/media/documents/sh-HB.pdf
The above data are collected from statistical figures that do not necessarily correspond to the actual parameters of each single LED. Hence, these data will be changed without further notice.
MECHANICAL DIMENSIONS

All dimensions are in mm. Tolerance is ±0.25 mm unless otherwise noted.

An epoxy meniscus may extend about 1.5 mm down the leads.

Burr around bottom of epoxy may be 0.5 mm max.

NOTES

Lead Frame Materials

Ag-plated and Lead-free Solder-plated iron.

RoHS Compliance

The levels of RoHS-restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application in accordance with EU Directive 2011/65/EC (RoHS2), as implemented by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863/EU.

RoHS Declarations for this product can be obtained from your Cree representative or from the Product Ecology section of the Cree website.

Vision Advisory Claim

Users should be cautioned not to stare at the light of this LED product. The bright light can damage the eye.
KIT NUMBER SYSTEM

All dimensions in mm. Cree LED lamps are tested and sorted into performance bins. A bin is specified by ranges of color, forward voltage, and brightness. Sorted LEDs are packaged for shipping in various convenient options. Please refer to the “Cree LED Lamp Packaging Standard” document for more information about shipping and packaging options.

Cree LEDs are sold by order codes in combinations of bins called kits. Order codes are configured in the following manner:

```
CCCC - Product Series
D - Color
  G - Option
    S : Standoff
    N : No Standoff
    B : Black Face
    W : White Face
    A : Black Body
    F : Iron Lead Frame with Standoff
T - Packaging Type
  1 : Bulk Pack
  2 : Ammo Pack
  3 : Tape & Reel (Roll Pack)
  4 : Tube Pack

CCCG - Max. Wavelength/Chromaticity Range
  R : Select 1 hue from 4 hue bins
  S : Select 1 hue from 3 hue bins
  T : Select 1 hue from 2 hue bins
  U : Select 2 hue from 4 hue bins
  V : Select 2 hue from 3 hue bins

M - Min. Wavelength/Chromaticity Range
  Refer to order code table

KK - Maximum Intensity Bin
  Refer to order code table

HH - Minimum Intensity Bin
  Refer to order code table
```

* Please contact our sales representative for ordering information.
REFLOW SOLDERING

The LED soldering specification is shown below (suitable for both leaded solder & lead-free solder):

<table>
<thead>
<tr>
<th>Manual Soldering</th>
<th>Solder Dipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering iron</td>
<td>35 W max</td>
</tr>
<tr>
<td>Temperature</td>
<td>300 °C max</td>
</tr>
<tr>
<td>Soldering time</td>
<td>3 seconds max</td>
</tr>
<tr>
<td>Position</td>
<td>Not less than 3 mm from the base of the package.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Preheat</th>
<th>Preheat time</th>
<th>Solder-bath temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering iron</td>
<td>110 °C max</td>
<td>60 seconds max</td>
<td>260 °C Max</td>
</tr>
<tr>
<td>Dipping time</td>
<td>5 seconds max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Manual soldering onto the PCB is not recommended because soldering time is uncontrollable.
• The recommended wave soldering is as below:

- Do not apply any stress to the LED package, particularly when heated.
- Only bottom preheat is suggested & should not preheat on top in order to reduce thermal stress experienced by the LEDs.
- The LEDs must not be reused once they have been extracted from PCB.
- After soldering the LEDs, the package should be protected from mechanical shock or vibration until the LEDs have reached 40 °C or below.
- Precautions must be taken as mechanical stress on the LEDs may be caused by PCB warpage or from the clinching and cutting of the LED leads.
- When it is necessary to clam the LEDs during soldering, it is important to ensure no mechanical stress is exerted on the LEDs.
- Cut the LED lead at normal room temperature. Lead cutting at high temperature may cause failure of the LEDs.

PACKAGING

Features:

- The LEDs are packed in cardboard boxes after packaging in normal or anti-electrostatic bags.
- Cardboard boxes will be used to protect the LEDs from mechanical shock during transportation.
- The boxes are not water resistant, and they must be kept away from water and moisture.
- The Bulk Pack types of packaging.
- Max 1000 pcs per bulk and Max 4000 pcs per ammo.

Bulk Pack Packaging Type:

Ammo Pack Packaging Type: