CGH40035

35-W RF Power GaN HEMT

Cree’s CGH40035F is an unmatched, galliu- nitride (GaN) high-electron-mobility transistor (HEMT). The CGH40035F, operating from a 28-volt rail, offers a general-purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities, making the CGH40035F ideal for linear and compressed amplifier circuits. The transistor is available in a screw-down flange package.

FEATURES:

  • Up to 4 GHz Operation
  • 15 dB Small Signal Gain at 2.0 GHz
  • 13 dB Small Signal Gain at 4.0 GHz
  • 45 W typical PSAT
  • 60 % Efficiency at PSAT
  • 28 V Operation

Applications

Related Documents

Data Sheets Version Last Updated
3.5 30 Jun 2014
RF Application Notes Version Last Updated
B 07 Aug 2012
A 30 Apr 2012
C 30 Apr 2012
A 30 Apr 2012
RF Product Ecology Version Last Updated
RS4001082013 27 Oct 2014
Sales Terms Version Last Updated
S-parameter Version Last Updated
Technical Papers & Articles Version Last Updated
by Raymond S. Pengelly, Simon M. Wood, James W. Milligan, Scott T. Sheppard, and William L. Pribble
Design 01 Jun 2012
by Raymond S. Pengelly, Brad Millon, Donald Farrell, Bill Pribble, and Simon Wood

Presentation from the 2008 IEEE MTT-S International Microwave Symposium (IMS) Workshop on Challenges in Model-Based HPA Design

This presentation discusses attributes of GaN HEMTs, Cree GaN HEMT models, design examples (Broadband CW Amplifiers and Linear WiMAX Amplifier), and future model improvements.
Design 16 Jun 2008
by Woo Lee, Sang-Ho Kam, and Yoon-Ha Jeong

This paper describes a new three-stage Doherty power amplifier (DPA) with an adaptive driving amplifier inserted at the input of the carrier cell.
Design 01 Jun 2011
by Donald A. Gajewski, Scott Sheppard, Tina McNulty, Jeff B. Barner, Jim Milligan and John Palmour

This paper reports the reliability performance of the Cree, Inc., GaN/AlGaN HEMT MMIC process technology, fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Design 01 May 2011
by Ildu Kim, Jangheon Kim, Junghwan Moon, Jungjoon Kim, and Bumman Kim

Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation, the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Design 01 Jun 2009
by Khaled Bathic; Georg Boeck

This paper presents the design of a wideband harmonically-tuned Doherty amplifier. The frequency-dependent back-off efficiency degradation was minimized by compensating the effect of the frequency-sensitive impedance inverters over the design band. Suitable choice of device size ratio as well as harmonic load tuning at back-off and maximum power operations were also considered, resulting in superior performance over the targeted design band.
Design 01 Jun 2012