CGH40006S

6-W RF Power GaN HEMT, Plastic

Cree’s CGH40006S is an unmatched, gallium-nitride (GaN) high-electron-mobility transistor (HEMT). The CGH40006S, operating from a 28-volt rail, offers a general-purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities, making the CGH40006S ideal for linear and compressed amplifier circuits. The transistor is available in a 3-mm x 3-mm, surface-mount, quad-flat-no-lead (QFN) package.

FEATURES:

  • Up to 6 GHz Operation
  • 13 dB Small Signal Gain at 2.0 GHz
  • 11 dB Small Signal Gain at 6.0 GHz
  • 8 W typical at PIN = 32 dBm
  • 65 % Efficiency at PIN = 32 dBm
  • 28 V Operation
  • 3mm x 3mm Package

Applications

Related Documents

Data Sheets Version Last Updated
1.7 30 Jun 2014
RF Application Notes Version Last Updated
B 07 Aug 2012
C 30 Apr 2012
A 30 Apr 2012
A 30 Apr 2012
Sales Terms Version Last Updated
S-parameter Version Last Updated
Technical Papers & Articles Version Last Updated
by Raymond S. Pengelly, Simon M. Wood, James W. Milligan, Scott T. Sheppard, and William L. Pribble
Design 01 Jun 2012
by Raymond S. Pengelly, Brad Millon, Donald Farrell, Bill Pribble, and Simon Wood

Presentation from the 2008 IEEE MTT-S International Microwave Symposium (IMS) Workshop on Challenges in Model-Based HPA Design

This presentation discusses attributes of GaN HEMTs, Cree GaN HEMT models, design examples (Broadband CW Amplifiers and Linear WiMAX Amplifier), and future model improvements.
Design 16 Jun 2008
by Gabriel Montoro, Pere Gilabert, Jordi Berenguer, and Eduard Bertran

This paper presents a new Digital Predistorter (DPD) to compensate for nonlinear distortion that arises in Envelope Tracking (ET) Power Amplifiers (PAs) driven by slew-rate limited versions of the real signal’s envelope.
Design 01 Jun 2011
by Donald A. Gajewski, Scott Sheppard, Tina McNulty, Jeff B. Barner, Jim Milligan and John Palmour

This paper reports the reliability performance of the Cree, Inc., GaN/AlGaN HEMT MMIC process technology, fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Design 01 May 2011
by Gabriel Montoro, Pere L. Gilabert, Pedro Vizarreta and Eduard Bertran

This paper presents a practical application of a method for generating slew-rate limited envelopes in order to drive the dynamic supply of envelope tracking (ET) power amplifiers (PAs).
Design 01 Jan 2011
by Ildu Kim, Jangheon Kim, Junghwan Moon, Jungjoon Kim, and Bumman Kim

Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation, the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Design 01 Jun 2009