CGH40006P

6-W RF Power GaN HEMT

Cree’s CGH40006P is an unmatched, gallium-nitride (GaN) high-electron-mobility transistor (HEMT). The CGH40006P, operating from a 28-volt rail, offers a general-purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities, making the CGH40006P ideal for linear and compressed amplifier circuits. The transistor is available in a solder-down pill package.

FEATURES:

  • Up to 6 GHz Operation
  • 13 dB Small Signal Gain at 2.0 GHz
  • 11 dB Small Signal Gain at 6.0 GHz
  • 8 W typical at PIN = 32 dBm
  • 65 % Efficiency at PIN = 32 dBm
  • 28 V Operation

Applications

Related Documents

Data Sheets Version Last Updated
2.1 30 Apr 2012
RF Application Notes Version Last Updated
B 07 Aug 2012
A 30 Apr 2012
C 30 Apr 2012
A 30 Apr 2012
A 30 Apr 2012
Sales Terms Version Last Updated
S-parameter Version Last Updated
Technical Papers & Articles Version Last Updated
by Junghwan Son, Ildu Kim, Junghwan Moon, Juyeon Lee, Bummam Kim

An asymmetric Doherty Power Amplifier (ADPA) is introduced using a new output combining circuit for easy of implementation with a large matching tolerance. The proposed APDA has been implemented using GaN HEMT devices at 2.6 GHz for WiMAX signal with 5MHz bandwidth and 8.3 dB peak to average power ratio.
Design 01 Nov 2011
by Christian Musolff; Michael Kamper; Zeid Abou-Chahinel; Georg Fischer

This article outlines the design procedure and presents the results of the winning power amplifier (PA) design at the PA competition held at the 2012 IEEE MTT-S International Microwave Symposium (IMS2012) and sponsored by the High-Power Microwave Components Committee (MTT-5).

Design 01 Jan 2013
by Raymond S. Pengelly, Simon M. Wood, James W. Milligan, Scott T. Sheppard, and William L. Pribble
Design 01 Jun 2012
by Raymond S. Pengelly, Brad Millon, Donald Farrell, Bill Pribble, and Simon Wood

Presentation from the 2008 IEEE MTT-S International Microwave Symposium (IMS) Workshop on Challenges in Model-Based HPA Design

This presentation discusses attributes of GaN HEMTs, Cree GaN HEMT models, design examples (Broadband CW Amplifiers and Linear WiMAX Amplifier), and future model improvements.
Design 16 Jun 2008
by Guolin Sun, Rolf H. Jansen

A comprehensive method of designing a broadband Doherty power amplifier is presented in this paper. The essential limitations of bandwidth extension of a Doherty power amplifier are discussed based on the proposed structure of the Doherty power amplifier, which also takes the output matching networks of both sub-amplifiers into account. The broadband matching is realized by applying the simplified real frequency technique with the desired frequency dependent optimum impedances. GaN transistors were selected to implement the circuit structure.
Design 01 Jan 2012
by Gabriel Montoro, Pere Gilabert, Jordi Berenguer, and Eduard Bertran

This paper presents a new Digital Predistorter (DPD) to compensate for nonlinear distortion that arises in Envelope Tracking (ET) Power Amplifiers (PAs) driven by slew-rate limited versions of the real signal’s envelope.
Design 01 Jun 2011
by Pedro P. Vizarreta; Gabriel Montoro; Pere L. Gilabert

This paper presents an envelope tracking (ET) Power Amplifier (PA) whose architecture includes an efficient Envelope Amplifier (EA) and a bandwidth reduction algorithm suitable for real time applications.
Design 01 Oct 2012
by Donald A. Gajewski, Scott Sheppard, Tina McNulty, Jeff B. Barner, Jim Milligan and John Palmour

This paper reports the reliability performance of the Cree, Inc., GaN/AlGaN HEMT MMIC process technology, fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Design 01 May 2011
by Gabriel Montoro, Pere L. Gilabert, Pedro Vizarreta and Eduard Bertran

This paper presents a practical application of a method for generating slew-rate limited envelopes in order to drive the dynamic supply of envelope tracking (ET) power amplifiers (PAs).
Design 01 Jan 2011
by Ildu Kim, Jangheon Kim, Junghwan Moon, Jungjoon Kim, and Bumman Kim

Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation, the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Design 01 Jun 2009